Academia.eduAcademia.edu

A Millimeter-Wave Partially Overlapped Beamforming-MIMO Receiver: Theory, Design, and Implementation

2019, IEEE Transactions on Microwave Theory and Techniques

Abstract

This paper presents an analysis and design of a partially-overlapped beamforming-MIMO architecture capable of achieving higher beamforming and spatial multiplexing gains with lower number of elements compared to conventional architectures. As a proof of concept, a 4-element beamforming-MIMO receiver (RX) covering 64-67 GHz frequency band 1 enabling 2-stream concurrent reception is designed and measured. By partitioning the RX elements into two clusters and partially overlapping these clusters to create two 3-element beamformers, both phased-array (coherent beamforming) as well as MIMO (spatial multiplexing) features are simultaneously acquired. 6bit phase shifters with 360 ˝phase control and 5-bit VGAs with 11 dB range are designed to enable steering of the two RX clusters toward two arbitrary angular locations corresponding to two users. Fabricated in a 130-nm SiGe BiCMOS process, the RX achieves a 30.15 dB maximum direct conversion gain and a 9.8 dB minimum noise figure (NF) across 548 MHz IF bandwidth. S-parameter-based array factor measurements verify spatial filtering of the interference and spatial multiplexing in this RX chip.